NET并行计算和并发4,线程安全类型

1、IProducerConsumerCollection (线程安全接口)
  此接口的所有实现必须都启用此接口的所有成员,若要从多个线程同时使用。

Thread Local Storage: Thread-Relative Static Fields and Data Slots



文章摘自msdn library官方文档

可以使用托管线程本地存储区 (TLS) 存储某一线程和应用程序域所独有的数据。
.NET Framework 提供了两种使用托管 TLS 的方式:线程相关的静态字段和数据槽。

  • 如果您可以在编译时预料到您的确切需要,请使用线程相关的静态字段(在
    Visual Basic 中为线程相关的 Shared 字段)。
    线程相关的静态字段可提供最佳性能。 它们还具备编译时类型检查的优点。

  • 如果只能在运行时发现您的实际需要,请使用数据槽。
    数据槽比线程相关的静态字段慢一些且更加难于使用,并且数据存储为
    Object.aspx)
    类型,因此必须将其强制转换为正确的类型才能使用。

在非托管 C++ 中,可以使用 TlsAlloc 来动态分配槽,使用
__declspec(thread) 来声明变量应在线程相关的存储区中进行分配。
线程相关的静态字段和数据槽提供了此行为的托管版本。

在 .NET Framework 4中,可以使用
System.Threading.ThreadLocal<T>.aspx)
类创建线程本地对象,在第一次使用该对象时它将惰式初始化。
有关详细信息,请参阅延迟初始化.aspx)。

托管 TLS 中数据的唯一性

 

无论是使用线程相关的静态字段还是使用数据槽,托管 TLS
中的数据都是线程和应用程序域组合所独有的。

  • 在应用程序域内部,一个线程不能修改另一个线程中的数据,即使这两个线程使用同一个字段或槽时也不能。

  • 当线程从多个应用程序域中访问同一个字段或槽时,会在每个应用程序域中维护一个单独的值。

例如,如果某个线程设置线程相关的静态字段的值,接着它进入另一个应用程序域,然后检索该字段的值,则在第二个应用程序域中检索的值将不同于第一个应用程序域中的值。
在第二个应用程序域中为该字段设置一个新值不会影响第一个应用程序域中该字段的值。

同样,当某个线程获取两个不同应用程序域中的同一命名数据槽时,第一个应用程序域中的数据将始终与第二个应用程序域中的数据无关。

线程相关的静态字段

 

如果您知道一些数据总是某个线程和应用程序域组合所独有的,请向该静态字段应用
ThreadStaticAttribute.aspx)
特性。 与使用任何其他静态字段一样使用该字段。
该字段中的数据是每个使用它的线程所独有的。

线程相关的静态字段的性能优于数据槽,并且具有编译时类型检查的优点。

请注意,任何类构造函数代码都将在访问该字段的第一个上下文中的第一个线程上运行。
在同一应用程序域内的所有其他线程或上下文中,如果字段是引用类型,它们将被初始化为
null(在 Visual Basic 中为
Nothing);如果字段是值类型,它们将被初始化为它们的默认值。
因此,您不应依赖于类构造函数来初始化线程相关的静态字段。
而应避免初始化线程相关的静态字段并假定它们初始化为 null
(Nothing) 或它们的默认值。

数据槽

 

.NET Framework 提供了线程和应用程序域组合所独有的动态数据槽。
数据槽包括两种类型:命名槽和未命名槽。
两者都是通过使用LocalDataStoreSlot.aspx)
结构来实现的。

  • 若要创建命名数据槽,请使用
    Thread.AllocateNamedDataSlot.aspx)

    Thread.GetNamedDataSlot.aspx)
    方法。 若要获取对某个现有命名槽的引用,请将其名称传递给
    GetNamedDataSlot.aspx)
    方法。

  • 若要创建未命名数据槽,请使用
    Thread.AllocateDataSlot.aspx)
    方法。

对于命名槽和未命名槽,请使用
Thread.SetData.aspx)

Thread.GetData.aspx)
方法设置和检索槽中的信息。
这些都是静态方法,它们始终作用于当前正在执行它们的线程的数据。

命名槽可能很方便,因为您可以在需要它时通过将其名称传递给
GetNamedDataSlot.aspx)
方法来检索该槽,而不是维护对未命名槽的引用。
但是,如果另一个组件使用相同的名称来命名其线程相关的存储区,并且有一个线程同时执行来自您的组件和该组件的代码,则这两个组件可能会破坏彼此的数据。(本方案假定这两个组件在同一应用程序域内运行,并且它们并不用于共享相同数据。)

C# 的集合类型中, 都有Synchronized静态方法, 和SyncRoot实例方法

图片 1图片 2

对于ArrayList以及Hashtable
集合类来讲,当需要做到线程安全的时候,最好利用其自带的属性SyncRoot
来做到,尽管也可以使用其Synchronized()方法来实现,但是使用属性会更好。

using System;
using System.Collections;
using System.Collections.Concurrent;
using System.Collections.Generic;

namespace ConsoleApp1
{
    public class SafeStack<T> : IProducerConsumerCollection<T>
    {
        // Used for enforcing thread-safety
        private object m_lockObject = new object();

        // We'll use a regular old Stack for our core operations
        private Stack<T> m_sequentialStack = null;

        //
        // Constructors
        //
        public SafeStack()
        {
            m_sequentialStack = new Stack<T>();
        }

        public SafeStack(IEnumerable<T> collection)
        {
            m_sequentialStack = new Stack<T>(collection);
        }

        //
        // Safe Push/Pop support
        //
        public void Push(T item)
        {
            lock (m_lockObject) m_sequentialStack.Push(item);
        }

        public bool TryPop(out T item)
        {
            bool rval = true;
            lock (m_lockObject)
            {
                if (m_sequentialStack.Count == 0) { item = default(T); rval = false; }
                else item = m_sequentialStack.Pop();
            }
            return rval;
        }

        //
        // IProducerConsumerCollection(T) support
        //
        public bool TryTake(out T item)
        {
            return TryPop(out item);
        }

        public bool TryAdd(T item)
        {
            Push(item);
            return true; // Push doesn't fail
        }

        public T[] ToArray()
        {
            T[] rval = null;
            lock (m_lockObject) rval = m_sequentialStack.ToArray();
            return rval;
        }

        public void CopyTo(T[] array, int index)
        {
            lock (m_lockObject) m_sequentialStack.CopyTo(array, index);
        }



        //
        // Support for IEnumerable(T)
        //
        public IEnumerator<T> GetEnumerator()
        {
            // The performance here will be unfortunate for large stacks,
            // but thread-safety is effectively implemented.
            Stack<T> stackCopy = null;
            lock (m_lockObject) stackCopy = new Stack<T>(m_sequentialStack);
            return stackCopy.GetEnumerator();
        }


        //
        // Support for IEnumerable
        //
        IEnumerator IEnumerable.GetEnumerator()
        {
            return ((IEnumerable<T>)this).GetEnumerator();
        }

        // 
        // Support for ICollection
        //
        public bool IsSynchronized
        {
            get { return true; }
        }

        public object SyncRoot
        {
            get { return m_lockObject; }
        }

        public int Count
        {
            get { return m_sequentialStack.Count; }
        }

        public void CopyTo(Array array, int index)
        {
            lock (m_lockObject) ((ICollection)m_sequentialStack).CopyTo(array, index);
        }
    }
}

线程安全集合:
BlockingCollection:
一个线程安全集合类,可为任何类型的集合提供线程安全

SafeStack

何时使用线程安全集合 
该文章解释了.net
framework4新引入的五个专门支持多线程添加和删除操作而设计的集合类型。不同于以前版本的中集合类型中的SyncRoot属性
以及 Synchronized()方法,这些新类型使用了高效的锁定和免锁定同步机制

图片 3图片 4

ConcurrentQueue(T)
ConcurrentStack(T)
ConcurrentDictionary(TKey, TValue)
ConcurrentBag(T)
BlockingCollection(T)

using System;
using System.Collections.Concurrent;

namespace ConsoleApp1
{
    class Program
    {
        static void Main()
        {
            TestSafeStack();

            // Keep the console window open in debug mode.
            Console.WriteLine("Press any key to exit.");
            Console.ReadKey();
        }

        // Test our implementation of IProducerConsumerCollection(T)
        // Demonstrates:
        //      IPCC(T).TryAdd()
        //      IPCC(T).TryTake()
        //      IPCC(T).CopyTo()
        static void TestSafeStack()
        {
            SafeStack<int> stack = new SafeStack<int>();
            IProducerConsumerCollection<int> ipcc = (IProducerConsumerCollection<int>)stack;

            // Test Push()/TryAdd()
            stack.Push(10); Console.WriteLine("Pushed 10");
            ipcc.TryAdd(20); Console.WriteLine("IPCC.TryAdded 20");
            stack.Push(15); Console.WriteLine("Pushed 15");

            int[] testArray = new int[3];

            // Try CopyTo() within boundaries
            try
            {
                ipcc.CopyTo(testArray, 0);
                Console.WriteLine("CopyTo() within boundaries worked, as expected");
            }
            catch (Exception e)
            {
                Console.WriteLine("CopyTo() within boundaries unexpectedly threw an exception: {0}", e.Message);
            }

            // Try CopyTo() that overflows
            try
            {
                ipcc.CopyTo(testArray, 1);
                Console.WriteLine("CopyTo() with index overflow worked, and it SHOULD NOT HAVE");
            }
            catch (Exception e)
            {
                Console.WriteLine("CopyTo() with index overflow threw an exception, as expected: {0}", e.Message);
            }

            // Test enumeration
            Console.Write("Enumeration (should be three items): ");
            foreach (int item in stack)
                Console.Write("{0} ", item);
            Console.WriteLine("");

            // Test TryPop()
            int popped = 0;
            if (stack.TryPop(out popped))
            {
                Console.WriteLine("Successfully popped {0}", popped);
            }
            else Console.WriteLine("FAILED to pop!!");

            // Test Count
            Console.WriteLine("stack count is {0}, should be 2", stack.Count);

            // Test TryTake()
            if (ipcc.TryTake(out popped))
            {
                Console.WriteLine("Successfully IPCC-TryTaked {0}", popped);
            }
            else Console.WriteLine("FAILED to IPCC.TryTake!!");
        }
    }
}

IProducerConsumerCollection<T>
定义了操作线程安全集合的方法,以供产品/使用者使用

Program

示例请看:
IProducerConsumerCollection<T>
Interface

2、ConcurrentStack类:安全堆栈

官方示例给的是基于堆栈的线程安全实现,他继承自该接口。然后加锁lock来实现线程安全,该接口有四个方法:

图片 5图片 6

[__DynamicallyInvokable]
public interface IProducerConsumerCollection<T> : IEnumerable<T>, ICollection, IEnumerable
{
// Methods
[__DynamicallyInvokable]
void CopyTo(T[] array, int index);
[__DynamicallyInvokable]
T[] ToArray();
[__DynamicallyInvokable]
bool TryAdd(T item);
[__DynamicallyInvokable]
bool TryTake(out T item);
}除了CopyTo 之外的方法, 其余的都是该接口自己,基于堆栈的线程安全实现也就是加锁, 那为什么不调用堆栈数据结构中的SyncRoot 属性和Synchronized()方法来加锁实现同步?
using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    class Program
    {
        static void Main(string[] args)
        {
            Task t = RunProgram();
            t.Wait();
        }

        static async Task RunProgram()
        {
            var taskStack = new ConcurrentStack<CustomTask>();
            var cts = new CancellationTokenSource();

            var taskSource = Task.Run(() => TaskProducer(taskStack));

            Task[] processors = new Task[4];
            for (int i = 1; i <= 4; i++)
            {
                string processorId = i.ToString();
                processors[i - 1] = Task.Run(
                    () => TaskProcessor(taskStack, "Processor " + processorId, cts.Token));
            }

            await taskSource;
            cts.CancelAfter(TimeSpan.FromSeconds(2));

            await Task.WhenAll(processors);
        }

        static async Task TaskProducer(ConcurrentStack<CustomTask> stack)
        {
            for (int i = 1; i <= 20; i++)
            {
                await Task.Delay(50);
                var workItem = new CustomTask { Id = i };
                stack.Push(workItem);
                Console.WriteLine("Task {0} has been posted", workItem.Id);
            }
        }

        static async Task TaskProcessor(
            ConcurrentStack<CustomTask> stack, string name, CancellationToken token)
        {
            await GetRandomDelay();
            do
            {
                CustomTask workItem;
                bool popSuccesful = stack.TryPop(out workItem);
                if (popSuccesful)
                {
                    Console.WriteLine("Task {0} has been processed by {1}", workItem.Id, name);
                }

                await GetRandomDelay();
            }
            while (!token.IsCancellationRequested);
        }

        static Task GetRandomDelay()
        {
            int delay = new Random(DateTime.Now.Millisecond).Next(1, 500);
            return Task.Delay(delay);
        }

        class CustomTask
        {
            public int Id { get; set; }
        }
    }
}

参照:
C# Synchronized 和 SyncRoot
实现线程同步的源码分析及泛型集合的线程安全访问
SyncRoot 属性

Program

如果调用得是集合类的SyncRoot属性的话,其锁是对象级别的,而static
则是类型级别的。具体的回头再研究下。

3、ConcurrentQueue类:安全队列

BlockingCollection类型这个集合类还是挺有意思的,他实现了IProducerConsumerCollection<T>的所有方法,可以实现任何自定义类型的线程安全。尤其是他的计时阻塞操作,具体代码示例请看:
如何:在 BlockingCollection
中逐个添加和取出项
BlockingCollection
概述

图片 7图片 8

using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    class Program
    {
        static void Main(string[] args)
        {
            Task t = RunProgram();
            t.Wait();
        }

        static async Task RunProgram()
        {
            var taskQueue = new ConcurrentQueue<CustomTask>();
            var cts = new CancellationTokenSource();

            var taskSource = Task.Run(() => TaskProducer(taskQueue));

            Task[] processors = new Task[4];
            for (int i = 1; i <= 4; i++)
            {
                string processorId = i.ToString();
                processors[i - 1] = Task.Run(
                    () => TaskProcessor(taskQueue, "Processor " + processorId, cts.Token));
            }

            await taskSource;
            cts.CancelAfter(TimeSpan.FromSeconds(2));

            await Task.WhenAll(processors);
        }

        static async Task TaskProducer(ConcurrentQueue<CustomTask> queue)
        {
            for (int i = 1; i <= 20; i++)
            {
                await Task.Delay(50);
                var workItem = new CustomTask { Id = i };
                queue.Enqueue(workItem);
                Console.WriteLine("插入Task {0} has been posted ThreadID={1}", workItem.Id, Thread.CurrentThread.ManagedThreadId);
            }
        }

        static async Task TaskProcessor(
            ConcurrentQueue<CustomTask> queue, string name, CancellationToken token)
        {
            CustomTask workItem;
            bool dequeueSuccesful = false;

            await GetRandomDelay();
            do
            {
                dequeueSuccesful = queue.TryDequeue(out workItem);
                if (dequeueSuccesful)
                {
                    Console.WriteLine("读取Task {0} has been processed by {1} ThreadID={2}",
                                        workItem.Id, name, Thread.CurrentThread.ManagedThreadId);
                }

                await GetRandomDelay();
            }
            while (!token.IsCancellationRequested);
        }

        static Task GetRandomDelay()
        {
            int delay = new Random(DateTime.Now.Millisecond).Next(1, 500);
            return Task.Delay(delay);
        }

        class CustomTask
        {
            public int Id { get; set; }
        }
    }
}

Program

4、ConcurrentDictionary类
  ConcurrentDictionary类写操作比使用锁的通常字典(Dictionary)要慢的多,而读操作则要快些。因此对字典要大量的线程安全的读操作,ConcurrentDictionary类是最好的选择
  ConcurrentDictionary类的实现使用了细粒度锁(fine-grained
locking)技术
,这在多线程写入方面比使用锁的通常的字典(也被称为粗粒度锁)

图片 9图片 10

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Diagnostics;

namespace ConsoleApp1
{
    class Program
    {
        static void Main(string[] args)
        {
            var concurrentDictionary = new ConcurrentDictionary<int, string>();
            var dictionary = new Dictionary<int, string>();

            var sw = new Stopwatch();

            sw.Start();
            for (int i = 0; i < 1000000; i++)
            {
                lock (dictionary)
                {
                    dictionary[i] = Item;
                }
            }
            sw.Stop();
            Console.WriteLine("Writing to dictionary with a lock: {0}", sw.Elapsed);

            sw.Restart();
            for (int i = 0; i < 1000000; i++)
            {
                concurrentDictionary[i] = Item;
            }
            sw.Stop();
            Console.WriteLine("Writing to a concurrent dictionary: {0}", sw.Elapsed);

            sw.Restart();
            for (int i = 0; i < 1000000; i++)
            {
                lock (dictionary)
                {
                    CurrentItem = dictionary[i];
                }
            }
            sw.Stop();
            Console.WriteLine("Reading from dictionary with a lock: {0}", sw.Elapsed);

            sw.Restart();
            for (int i = 0; i < 1000000; i++)
            {
                CurrentItem = concurrentDictionary[i];
            }
            sw.Stop();
            Console.WriteLine("Reading from a concurrent dictionary: {0}", sw.Elapsed);
        }

        const string Item = "Dictionary item";
        public static string CurrentItem;
    }
}

Program

5、ConcurrentBag类

图片 11图片 12

namespace ConsoleApp1
{
    class CrawlingTask
    {
        public string UrlToCrawl { get; set; }

        public string ProducerName { get; set; }
    }
}

CrawlingTask

图片 13图片 14

using System.Collections.Generic;

namespace ConsoleApp1
{
    static class Module
    {
        public static Dictionary<string, string[]> _contentEmulation = new Dictionary<string, string[]>();

        public static void CreateLinks()
        {
            _contentEmulation["http://microsoft.com/"] = new[] { "http://microsoft.com/a.html", "http://microsoft.com/b.html" };
            _contentEmulation["http://microsoft.com/a.html"] = new[] { "http://microsoft.com/c.html", "http://microsoft.com/d.html" };
            _contentEmulation["http://microsoft.com/b.html"] = new[] { "http://microsoft.com/e.html" };

            _contentEmulation["http://google.com/"] = new[] { "http://google.com/a.html", "http://google.com/b.html" };
            _contentEmulation["http://google.com/a.html"] = new[] { "http://google.com/c.html", "http://google.com/d.html" };
            _contentEmulation["http://google.com/b.html"] = new[] { "http://google.com/e.html", "http://google.com/f.html" };
            _contentEmulation["http://google.com/c.html"] = new[] { "http://google.com/h.html", "http://google.com/i.html" };

            _contentEmulation["http://facebook.com/"] = new[] { "http://facebook.com/a.html", "http://facebook.com/b.html" };
            _contentEmulation["http://facebook.com/a.html"] = new[] { "http://facebook.com/c.html", "http://facebook.com/d.html" };
            _contentEmulation["http://facebook.com/b.html"] = new[] { "http://facebook.com/e.html" };

            _contentEmulation["http://twitter.com/"] = new[] { "http://twitter.com/a.html", "http://twitter.com/b.html" };
            _contentEmulation["http://twitter.com/a.html"] = new[] { "http://twitter.com/c.html", "http://twitter.com/d.html" };
            _contentEmulation["http://twitter.com/b.html"] = new[] { "http://twitter.com/e.html" };
            _contentEmulation["http://twitter.com/c.html"] = new[] { "http://twitter.com/f.html", "http://twitter.com/g.html" };
            _contentEmulation["http://twitter.com/d.html"] = new[] { "http://twitter.com/h.html" };
            _contentEmulation["http://twitter.com/e.html"] = new[] { "http://twitter.com/i.html" };
        }
    }
}

Module

图片 15图片 16

using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    class Program
    {
        static void Main(string[] args)
        {
            Module.CreateLinks();
            Task t = RunProgram();
            t.Wait();
        }

        static async Task RunProgram()
        {
            var bag = new ConcurrentBag<CrawlingTask>();

            string[] urls = new[] { "http://microsoft.com/", "http://google.com/", "http://facebook.com/", "http://twitter.com/" };

            var crawlers = new Task[4];
            for (int i = 1; i <= 4; i++)
            {
                string crawlerName = "Crawler " + i.ToString();
                bag.Add(new CrawlingTask { UrlToCrawl = urls[i - 1], ProducerName = "root" });
                crawlers[i - 1] = Task.Run(() => Crawl(bag, crawlerName));
            }

            await Task.WhenAll(crawlers);
        }

        static async Task Crawl(ConcurrentBag<CrawlingTask> bag, string crawlerName)
        {
            CrawlingTask task;
            //尝试从bag中取出对象
            while (bag.TryTake(out task))
            {
                IEnumerable<string> urls = await GetLinksFromContent(task);
                if (urls != null)
                {
                    foreach (var url in urls)
                    {
                        var t = new CrawlingTask
                        {
                            UrlToCrawl = url,
                            ProducerName = crawlerName
                        };
                        //将子集插入到bag中 
                        bag.Add(t);
                    }
                }
                Console.WriteLine("Indexing url {0} posted by {1} is completed by {2}!",
                    task.UrlToCrawl, task.ProducerName, crawlerName);
            }
        }

        static async Task<IEnumerable<string>> GetLinksFromContent(CrawlingTask task)
        {
            await GetRandomDelay();

            if (Module._contentEmulation.ContainsKey(task.UrlToCrawl)) return Module._contentEmulation[task.UrlToCrawl];

            return null;
        }

        static Task GetRandomDelay()
        {
            int delay = new Random(DateTime.Now.Millisecond).Next(150, 200);
            return Task.Delay(delay);
        }


    }
}

Program

6、BlockingCollection类
  BlockingCollection类:
我们能够改变任务存储在阻塞集合中的方式。默认情况下它使用的是ConcurrentQueue容器,但是我们能够使用任何实现了IProducerConsumerCollection泛型接口的集合。

图片 17图片 18

namespace ConsoleApp1
{
    class CustomTask
    {
        public int Id { get; set; }
    }
}

CustomTask

图片 19图片 20

using System;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    static class Module
    {
        public static Task GetRandomDelay()
        {
            int delay = new Random(DateTime.Now.Millisecond).Next(1, 500);
            return Task.Delay(delay);
        }
    }
}

Module

图片 21图片 22

using System;
using System.Collections.Concurrent;
using System.Threading.Tasks;

namespace ConsoleApp1
{
    class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Using a Queue inside of BlockingCollection");
            Console.WriteLine();
            Task t = RunProgram();
            t.Wait();

            //Console.WriteLine();
            //Console.WriteLine("Using a Stack inside of BlockingCollection");
            //Console.WriteLine();
            //Task t = RunProgram(new ConcurrentStack<CustomTask>());
            //t.Wait();
        }

        static async Task RunProgram(IProducerConsumerCollection<CustomTask> collection = null)
        {
            var taskCollection = new BlockingCollection<CustomTask>();
            if (collection != null)
                taskCollection = new BlockingCollection<CustomTask>(collection);
            //初始化collection中的数据
            var taskSource = Task.Run(() => TaskProducer(taskCollection));

            Task[] processors = new Task[4];
            for (int i = 1; i <= 4; i++)
            {
                string processorId = "Processor " + i;
                processors[i - 1] = Task.Run(
                    () => TaskProcessor(taskCollection, processorId));
            }

            await taskSource;

            await Task.WhenAll(processors);
        }
        /// <summary>
        /// 初始化collection中的数据
        /// </summary>
        /// <param name="collection"></param>
        /// <returns></returns>
        static async Task TaskProducer(BlockingCollection<CustomTask> collection)
        {
            for (int i = 1; i <= 20; i++)
            {
                await Task.Delay(20);
                var workItem = new CustomTask { Id = i };
                collection.Add(workItem);
                Console.WriteLine("Task {0} has been posted", workItem.Id);
            }
            collection.CompleteAdding();
        }
        /// <summary>
        /// 打印collection中的数据
        /// </summary>
        /// <param name="collection"></param>
        /// <param name="name"></param>
        /// <returns></returns>
        static async Task TaskProcessor(
            BlockingCollection<CustomTask> collection, string name)
        {
            await Module.GetRandomDelay();
            foreach (CustomTask item in collection.GetConsumingEnumerable())
            {
                Console.WriteLine("Task {0} has been processed by {1}", item.Id, name);
                await Module.GetRandomDelay();
            }
        }
    }
}

Program

7、使用ThreadStatic特性
  ThreadStatic特性是最简单的TLS使用,且只支持静态字段,只需要在字段上标记这个特性就可以了

图片 23图片 24

using System;
using System.Threading;

namespace ConsoleApp1
{
    class Program
    {
        //TLS中的str变量
        //可以看到,str静态字段在两个线程中都是独立存储的,互相不会被修改。
        [ThreadStatic]
        static string str = "hehe";

        static void Main(string[] args)
        {
            //另一个线程只会修改自己TLS中的hehe
            Thread th = new Thread(() => { str = "Mgen"; Display(); });
            th.Start();
            th.Join();
            Display();
        }
        static void Display()
        {
            Console.WriteLine("{0} {1}", Thread.CurrentThread.ManagedThreadId, str);
        }

    }
}

Program

8、使用命名的LocalDataStoreSlot类型
  显然ThreadStatic特性只支持静态字段太受限制了。.NET线程类型中的LocalDataStoreSlot提供更好的TLS支持。我们先来看看命名的LocalDataStoreSlot类型,可以通过Thread.AllocateNamedDataSlot来分配一个命名的空间,通过Thread.FreeNamedDataSlot来销毁一个命名的空间。空间数据的获取和设置则通过Thread类型的GetData方法和SetData方法。

图片 25图片 26

using System;
using System.Threading;

namespace ConsoleApp1
{
    class Program
    {
        static void Main(string[] args)
        {
            //创建Slot
            LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot("slot");

            //设置TLS中的值
            Thread.SetData(slot, "hehe");

            //修改TLS的线程
            Thread th = new Thread(() =>
            {
                Thread.SetData(slot, "Mgen");
                Display();
            });

            th.Start();
            th.Join();
            Display();

            //清除Slot
            Thread.FreeNamedDataSlot("slot");
        }

        //显示TLS中Slot值
        static void Display()
        {
            LocalDataStoreSlot dataslot = Thread.GetNamedDataSlot("slot");
            Console.WriteLine("{0} {1}", Thread.CurrentThread.ManagedThreadId, Thread.GetData(dataslot));
        }

    }
}

Program

9、使用未命名的LocalDataStoreSlot类型
  线程同样支持未命名的LocalDataStoreSlot,未命名的LocalDataStoreSlot不需要手动清除,分配则需要Thread.AllocateDataSlot方法。注意由于未命名的LocalDataStoreSlot没有名称,因此无法使用Thread.GetNamedDataSlot方法,只能在多个线程中引用同一个LocalDataStoreSlot才可以对TLS空间进行操作,将上面的命名的LocalDataStoreSlot代码改成未命名的LocalDataStoreSlot执行

图片 27图片 28

using System;
using System.Threading;

namespace ConsoleApp1
{
    class Program
    {
        //静态LocalDataStoreSlot变量
        static LocalDataStoreSlot slot;

        static void Main(string[] args)
        {
            //创建Slot
            slot = Thread.AllocateDataSlot();

            //设置TLS中的值
            Thread.SetData(slot, "hehe");

            //修改TLS的线程
            Thread th = new Thread(() =>
            {
                Thread.SetData(slot, "Mgen");
                Display();

            });

            th.Start();
            th.Join();
            Display();
        }

        //显示TLS中Slot值
        static void Display()
        {
            Console.WriteLine("{0} {1}", Thread.CurrentThread.ManagedThreadId, Thread.GetData(slot));
        }

    }
}

Program

10、使用.NET 4.0的ThreadLocal<T>类型
  .NET
4.0在线程方面加入了很多东西,其中就包括ThreadLocal<T>类型,他的出现更大的简化了TLS的操作。ThreadLocal<T>类型和Lazy<T>惊人相似,构造函数参数是Func<T>用来创建对象(当然也可以理解成对象的默认值),然后用Value属性来得到或者设置这个对象。
  ThreadLocal的操作或多或少有点像上面的未命名的LocalDataStoreSlot,但ThreadLocal感觉更简洁更好理解。

图片 29图片 30

using System;
using System.Threading;

namespace ConsoleApp1
{
    class Program
    {
        static ThreadLocal<string> local;

        static void Main(string[] args)
        {
            //创建ThreadLocal并提供默认值
            local = new ThreadLocal<string>(() => "hehe");

            //修改TLS的线程
            Thread th = new Thread(() =>
            {

                local.Value = "Mgen";
                Display();
            });

            th.Start();
            th.Join();
            Display();
        }

        //显示TLS中数据值
        static void Display()
        {
            Console.WriteLine("{0} {1}", Thread.CurrentThread.ManagedThreadId, local.Value);
        }

    }
}

Program